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Abstract. The variational principle for the real homogeneous Monge—&mpequation in two
dimensions is shown to contain three arbitrary functions of four variables. There exist two
different specializations of this variational principle where the Lagrangian is degenerate and
furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of
these degenerate Lagrangian systems requires the use of Dirac’s theory of constraints. As
in the case of most completely integrable systems the constraints are second class and Dirac
brackets directly yield the Hamiltonian operators. Thus the real homogeneous MongereAmp
equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely
a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-
forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian
operator corresponds to the Kac—Moody algebra of vector fields and functions on the unit circle.
Hamiltonian operators that belong to either class are compatible with each other but between
classes there is only one compatible pair. In the case of real Mongegngguations with
constant right-hand side this compatible pair is the only pair of Hamiltonian operators that
survives. Then the complete integrability of all these real Monge-&mgquations follows

by Magri's theorem. Some of the remarkable properties we have obtained for the Hamiltonian
structure of the real homogeneous Monge—Angpequation in two dimensions turn out to

be generic to the real homogeneous Monge—Arapequation and the geodesic flow for the
complex homogeneous Monge—Aerp equation in arbitrary number of dimensions. Hence
among all integrable nonlinear evolution equations in one space and one time dimension, the
real homogeneous Monge—Agme equation is distinguished as one that retains its character as
an integrable system in multiple dimensions.

1. Introduction

Recently we had found [1] that the real homogeneous Monge-edenpquation (RHMA)
in two dimensions, hereafter to be referred to as RBMa&dmits generalized Hamiltonian
structure. In field theory this type of structure arises for degenerate Lagrangian systems
where we must use Dirac’s theory of constraints [2] to cast the problem in Hamiltonian form
and finds its zenith in the theorem of Magri [3] for completely integrable bi-Hamiltonian
systems. We refer the reader to [4] for an exposition of this subject. In this paper we shall
show that RHMA and the geodesic flow for the complex homogeneous Mongesr&mp
equation (CHMA) admit infinitely many Hamiltonian structures in arbitrary dimension. By
Magri’'s theorem this result shows the complete integrability of RHMA and, in turn, RHMA
provides the richest illustration of Magri’s theorem.

It will be useful to first list the various homogeneous Monge—&nepequations that we
shall discuss in order to fix the notation. On a real manifddof dimensionn, RHMA,,
is given by

detugs =0 a=01....n—-1 (2)
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where
. 92u
T 9x@9xh

is the matrix of second derivatives. We shall take= r and write (1) as a first-order
system of nonlinear evolution equations. Without loss of generality we may assume

detu,, # 0 a=1,...,.n—1 2

Uap

which is a statement of the non-degeracy of (1). i 1 dimensions we have the simplest
case of real Monge—Angpe equations:
2

Uiy — Uy, K 3)

K=+10
which is hyperbolic, elliptic, or homogeneous (RHMArespectively. We shall show that
two types of Hamiltonian operators exist for RHMAa family of local (equation (29)), as
well as non-local (equation (51)) operators, both of which contain an arbitrary function of
two variables.

We shall start with a discussion of the variational principles underlying REIMPhe
Lagrangian which results in the equations of motion for RHM#ntains three arbitrary
functions of four variables. We shall concentrate on two qualitatively different classes
of Lagrangians which are specializations of the master Lagrangian (10) for RHMA
cf equations (11) and (43) below, both of which contain arbitrary functions and which
are furthermore degenerate. That is, the passage to a Hamiltonian formulation of these
degenerate Lagrangian systems gives rise to second class constraints as in the case of most
completely integrable systems [5]. The resulting two families of Hamiltonian operators, cf
equations (29) and (51) contain all the information in the Dirac brackets of RHMAese
Hamiltonian operators are infinite in number as they contain arbitrary functions which make
their first appearance in the Lagrangian formulation of RHMyich, in turn, is related to
its character as a universal field equation [6]. Any pair of local, or non-local Hamiltonian
operators are compatible, however, a local Hamiltonian operator is not in general compatible
with a non-local Hamiltonian operator with the exceptionJgfof (30) andJ; given by
(52). These two Hamiltonian operators determine part of the multi-Hamiltonian structure
of the real Monge—Amgre equation (3) when the right-hand side is a non-zero constant.

We shall show that the Kac—Moody algebra that corresponds to the simplest non-local
Hamiltonian operator (52) for RHMAconsists of the algebra of vector fields and functions
on S'. The family of local Hamiltonian operators can be brought to the standard form
of a first-order operator by a Miura transformation. The recursion operator obtained by a
composition of the simplest local and non-local Hamiltonian operators is Sheftel’-type [7],
that is, it can be written as the square of a first-order operator which is a good recursion
operator itself. Finally, we shall present the symplectic structure of RipMAich is dual
to these Hamiltonian structures. We shall also show that the symplectic 2-forms obtained
in this way are the time components of the Witten—Zuckerman [8] 2-form that is the main
geometrical object in the covariant formulation of symplectic structure.

In the theory of developable surfaces there is an equation which may be called Ur-
RHMA,

usu, =k 4)

where k is constant, as it is well known [9] that solutions of (4) must satisfy RHMA
We shall discuss the Hamiltonian structure of Ur-RHMik section 12 and show that
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the Hamiltonian operators appropriate to this equation consist of a scalar version of the
Hamiltonian operators for RHMAwhich lends further credence to its name.

We shall show that RHMA is an example of a nonlinear evolution equation that is
integrable in ararbitrary humber of dimensions, see [6] for other universal field equations
with this property. In section 13 we shall find that some of the remarkable results we
shall report on the Hamiltonian structure of RHMAold for RHMA, as well. Hence
RHMA, will serve as the prototype for the discussion of the symplectic structure of all
real homogeneous Monge—-Aine equations. The Hamiltonian structure of the complex
Monge-Amgre equation is quite different from that of RHMA and will not be considered
in this paper. On the other hand the Hamiltonian structure of the geodesic flow defined by
CHMA [10], which will be discussed in section 14, is very similar to that of RHMA.

2. First-order evolutionary form of RMA ,

For the Hamiltonian treatment of real Monge—A&ng equations we need to rewrite them
as a system of nonlinear evolution equations which is first order in time. For RHNiA
is most conveniently accomplished by introducing the definitions

Ux =p ur=4q (5)
and accordingly the equations of motion are either given by
1
w=q  a=_—(a"-K) (6)
or
1 2
Pt = gx Qr=?(qx _K) (7)

but we note that this split of (3) into either one of these pair of evolution equations is
not unique. Thus we have necessarily introduced a degree of freedom over and above that
present in (3) itself. We shall return to this point in section 5.3 on the Miura transformation.

Henceforth we shall use the notatigw'; i = 1, 2} for the first-order variables where
u' will stand for eitheru, or p andu? = ¢. Then the vector field defining the flow for (3)
is given by

2 2
X, =g+ WKLy g 0yt (8)
ou uxx 0q ap px 9q

respectively. We shall cast the equations of motion following from (8) into the form of
Hamilton’s equations

uh=X@w) ={u, H) = J* 8 H 9)
where the Hamiltonian operatdr defining the Poisson bracket is a skew-symmetric matrix

of differential operators satisfying the Jacobi identities @pddenotes the variational
derivative with respect ta'.

3. Variational formulation of RHMA »

We shall find that the Hamiltonian operators for RHMAre doubly infinite in number.

The reason for the existence of such a multitude of Hamiltonian structures can be traced
back to the fact that the variational principle (10) for the real homogeneous Monge&r&mp
equation contains arbitrary functions. Our approach to the construction of the Hamiltonian
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operators as Dirac brackets appropriate to degenerate Lagrangian systems will make it
manifest that the existence of arbitrary functions in Lagrangians for RElMAesponsible
for their appearance in the Hamiltonian operators.

It can be verified directly that the equations of motion following from the variational
principle

8§ =0 =/£dtdx

with Lagrangian density
L= ll Uyt +12 Usx +l3 Uxx

la:la (ut’u“ult,utx> Ol=1,2,3

Uy Uxx

(10)

yield RHMA; in the form of (3). There are three arbitrary functions of four variables in
this Lagrangian. We have not explicitly indicated the possible dependerig®nfthe third
combination of the ratio of second derivatives above as it is derivable from the others. It
appears that this is the richest example of a variational principle for any nonlinear partial
differential equation. Fairlie, Govaerts and Morozov [6] have considered the hierarchy of
field equations where the equations of motion at any level are proportional to the Lagrangian
at the next. They pointed out that this is a finite hierarchy ending in ‘universal field
equations’. RHMA is precisely such a universal field equation and this is the reason why
we should expect arbitrary functions in the Lagrangian (10).

In the variational formulation of (6) we shall consider various specializations of the
arbitrary functiond,, in (10) which will still contain arbitrary functions of a more specialized
variety. It is, however, important to remember that the enormous number of possibilities
offered by the master Lagrangian (10) is the source of all the results we shall present below.

4. Local Dirac bracket for RHMA >
A useful specialization of the Lagrangian density (10) that results in the first-order equations
of motion (6) for RHMA, is given by

Ly =xqr — hy, (U — q) gx (11)
where

A= AUy, q) Ay, #0 (12)

is a twice differentiable arbitrary function of two variables. The canonical momenta
appropriate to this Lagrangian are given by

9L,

T =Ty = — = —Ay Gy
ou, (13)
L,

Ty =7y = =A
9q;

subject to the canonical Poisson bracket relations
{mi (), u (M) =8 8(x —y) (14)

with all others vanishing. But the momenta (13) cannot be inverted for the velocities, or
alternatively the Hessian vanishes
32L;,

i a0k
au', du';

det =0 (15)
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and we have a degenerate Lagrangian system. Thus the passage to the Hamiltonian
formulation of the Lagrangian (11) requires the use of Dirac’s theory of constraints.
Following Dirac we introduce the two primary constraints that result from (13)

@1 =1y + Xy qx
P2 =14 — A
and calculate their Poisson brackets using the canonical Poisson bracket relations (14). The
result
{$1(x), P1()} = Gy Auyu, Sy (X — ¥) — G A, 8:(y — X)
{1(x), p2(3)} = Au, 8y (x — ¥) = Ay, 8 (Y — X) — Gx Agu, 8(y — ) 17)

{p2(x), p2(»)} =0

shows that the constraints (16) are second class as they do not vanish modulo the constraints.
This is a typical situation for integrable systems as in the example of KdV, or shallow water
equations [5]. | am gratefubtC A P Galh@o [11] for pointing out to me that one should
not simplify the Poisson brackets of the constraints (17) using the rules for manipulating
distributions as such ‘simplifications’ often lead to incorrect Dirac brackets.

The total Dirac Hamiltonian is given by

HT = / (7'[,' Mit —£+Ci¢)i) dx (18)

(16)

wherec’ are Lagrange multipliers and summation ovet 1, 2 is implied. The condition
that the constraints are maintained in time

{¢i(x), Hr} =0 (19)

gives rise to no further constraints which would have been secondary constraints.
Instead, using equations (17), we find that the Lagrange multipliers are determined from
equations (19)

and they do not depend on the choice of the arbitrary functioThis is expected since

the constraints and therefore the total Hamiltonian is linear in the momenta, the correct
equations of motion will result only if the Lagrange multipliers are simply the components
of the vector field (8) for the flow. Finally from (18) we find

2 2)\,
H)L,T:/(qﬂu‘i‘zx ﬂq_qx ) dx (20)

XX uXX

for Dirac’s total Hamiltonian. The check that with this total Hamiltonian all the equations
of motion are satisfied is straightforward and we can summarize all of them in Hamilton’s
equations

AI = {A5 H)»,T} (21)

where A is any functional of the canonical variables. There is, however, one further
simplification that we can carry out because in Dirac’s theory second class constraints
hold as strong equations. This fact gives us the choice of eliminating the momenta from
equations (13). Then we can write

HA,T =(qd4x )\ux (22)
for the total Dirac Hamiltonian density.
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Given any two differentiable functionals of the canonical variabdeand B, the Dirac
bracket is defined by

{AX), B(m)lo = {A@), B()} — /{A(x), ¢i ()} (2, w){de(w), B(y)} dz dw (23)

where J* is the inverse of the matrix of Poisson brackets of the constraints. The definition
of the inverse is simply

/{cbi(X), oY (z,y) dz = 8/ 8(x — y) (24)

which results in a set of differential equations for the entries/ét Starting with the
Poisson bracket relations (17) we find that equations (24) can be readily solved to yield

JHx, ) =0
J2(x. y) = — S(x —
(. y) . x -y
(25)
TP (x, y) = S(x —y)
J?2(x,y) = o2 s —y)— ) sx—y)
* )\u,\.ux Mxxz )“qux uxxz x

for the inverse of (17). It will be convenient to rename the arbitrary functioas
according to

"y (26)

Auu, =

Q|

to simplify the calculations that will follow.

5. Local Hamiltonian operators for RHMA ,

The transition from the Dirac bracket to the Hamiltonian operator is given by
' (), W Mo = T4 (x, y) = TH@)8 (x — y) (27)

and from (27) and (25) it follows that the Hamiltonian operator corresponding to the
degenerate Lagrangian (11) is simply

0 q
Mg U
Ju= q qq o q9x (28)
- o Dx+Dx a

2 2
H"I Uxx M(J Uyx ,qu Uiy

which contains the arbitrary function of two variables. Two particular choices of this
arbitrary function, namely, = %qz and i = u,q result in the bi-Hamiltonian structure of
(3) reported in [1].

Under the change of variable = u, the Hamiltonian operator (28) is transformed

q

0 D,
= q qq e qq (29)
D, oD+ Dy ——
M‘I Px M‘I uxx Mq uxx
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which is the form of the local Hamiltonian operator for RHMhat we shall use henceforth.
The most important element of the family of Hamiltonian operators in (29) is given by

Jo= (30)

which corresponds to the choige= %qz.

From the construction of the Dirac bracket in section 4 it is clear that the reason for the
presence of the arbitrary functignin the Hamiltonian operator (29) can be traced back to
the degenerate Lagrangian (11) where it makes its first appearaicérasrder to proceed
we need to prove that (29) is indeed a Hamiltonian operator which requires a check of the
Jacobi identities. However, this also follows from the fact that (29) is derived from the
Dirac bracket (25) for which we have a general proof of the Jacobi identities [12].

5.1. Jacobi identities

The Hamiltonian operator is a bi-vector which defines the Poisson bracket. The skew-
symmetry of the operator (29) is manifest. In order to verify that a given bi-vector is
Hamiltonian we must verify that it satisfies the tri-vector Jacobi identities. Thus following
Olver [4] we introduce an arbitrary basis of tangent vect®ra/hich are then conveniently
manipulated according to the rules of exterior calculus. The Jacobi identities are given by
the compact expression

LéI=0 (mod div.) (31)
where

L=J® I=10"ArJ0O (32)

1
2
and é§ denotes the variational derivative. The vanishing of the tri-vector (31) modulo a

divergence is equivalent to the satisfaction of the Jacobi identities.
For the Hamiltonian operator (29) we have a two component system and introducing

the basis
_ n
o=(7)

from equations (32) we have

( q )9+ q_g.
MqPx/ Mg Px

p=
9 po+2-9% g, +< qq*2> 9 33)
:qux qux Mflpx X

=1 (QAnx—i-%@/\@x).
Mg Px X
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To form the required expression in (31) we first calculate the variational derivatives

81y 9x q qPxx
~ = — 5 (Hgqqx + 2pgpx) — 2 O An
5p [quf ufpf( gats + 2itpq ) Hep? i

4

2 2

9"+ 99 1gqq4, Mpgd9x  A99xPxx

+[2 " _2u2p3 _3u2p2 —eup }emex
qrx q Fx q Fx qrx

(34)

+L2 (Ox/\nx +9/\7/m)+2 qqx3 QAGXX
I‘Lqpx qux
81 1 ¢
”:( _q/“;‘M)QAr}X—}—(C”:M—i—qux%)e/\@x—qze/\exx
dq Mg Px Ky DPx Mg Px Mg Dy Hq Dy

and take their exterior product with,. The result

2

L,él, = _(33 N 77x>
q Py X

is a total derivative so that the Jacobi identities are satisfied.

5.2. Hamilton’s equations

It can be directly verified that

HM = W Px (35)

is conserved for the flow (8) and this is the Hamiltonian density appropriate to the operator
(29). That is, the equations of motion (8) are cast into the form of Hamilton’s equations
(9) with J, and H,. But sinceu is an arbitrary function ofp andg, given any other
differentiable functionv = v(p, ¢) we have

J, 8H, = J, 8H, (36)

which is a statement of the Lenard—Magri recursion relation. Thus we have another
expression of the fact that there exist infinitely many Hamiltonian operators for RHMA
The Casimir density for the Hamiltonian operator (29) is given by

C, =0 pyx (37)
where
1
O‘q = ;,uq (38)

since it can be readily verified thd;,§C, = 0. The proof of the Jacobi identities for (29)
in section 5.1 is for arbitrary,, hence all local Hamiltonian operatodg are compatible
with each other.

5.3. The Miura transformation

The remarkable feature of the Hamiltonian operator (29) is the existengea arbitrary
function of two variables. We have already remarked that for the Hamiltonian formulation
of RHMA, we need to start with a pair of nonlinear evolution equations and therefore had
to use the equations of motion defined by the vector field (8) rather than equation (3) itself.
This introduces an extra degree of freedom as the definitions @fcannot be unique. It

may appear that this extra degree of freedom could be responsible for the existence of the
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arbitrary functionu in the Hamiltonian operator (29). This is not the case. We have shown
that the reason for the appearance of this arbitrary function in the Hamiltonian operator can
be traced back to the existence of arbitrary functions in the master Lagrangian. Nevertheless,
there is certainly an extra degree of freedom available in the definition of the first-order
dependent variables for RHMAand it is possible to exploit it for various purposes. In fact
by a redefinition ofy the Hamiltonian operator (29) can be brought to the standard form of
a first-order operator with constant coefficients.

In place of (7) we may use the following definitions for the auxiliary variakies

Uy =p uy=Q (p, ;1) (39)

where Q is a differentiable function of its arguments. The equations of motion are now
given by

pr = 0O« qr = (qu) (40)
Px x
which are already in standard Hamiltonian form. That is, we have

(a)=(o 5 )(5) %

with the familiar first-order Hamiltonian operator and the Hamiltonian density is given by

n=n(p L) (42)

X

whereh is related toQ through7, = Q. The transformation of variables obtained by a
comparison of (39) and (5) is a Miura transformation as it brings the Hamiltonian operator
to the canonical form (41) of Gardner—Zakharov—Fadeev [13] with constant coefficients.

6. Non-local Dirac bracket for RHMA >

There is another family of Hamiltonian operators for equations (6) which falls outside the
class of Hamiltonian operators in (29). Its origin can be traced back to the fact that

EK =K px + K¢ (Pr - qx) (43)
with « an arbitrary function of two variables
k=K (p,r) r=d krr #0 (44)

X
is a new Lagrangian for the system (6). This is another specialization of the master
Lagrangian (10) which is also degenerate and the passage to its Hamiltonian formulation
again requires the use of Dirac’s theory.
Starting with the Lagrangian (43) the momenta are given by

0 —n L,
= = = K,
! ! op:
(45)
L,
=11, = =0
9q;
which cannot be inverted for the velocities. So we introduce the primary constraints
o1 =11, —«,
— (46)

@, =T,
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and using the canonical Poisson bracket relations (14) we find

[@1(x), D1(y)} = Ky (x) % 8e(x = ¥) — K (y) % 8y(y — x)

x y

1
(@100, @200} = () 85006 =) (47)

{®2(x), P2(y)} =0

which show that the constraints are once again second class. The total Hamiltonian consists
of a sum of the free Hamiltonian with a linear combination of the constraints as in (18) and
the requirement that the constraints (46) are maintained in time, cf equations (19), does not
lead to secondary constraints but instead determines the Lagrange multipliers

2
C:L:qx szqi
Px

which also do not depend on the arbitrary functionUsing this information we find that

2
HKT:/‘<qxnp+qpan_pr) dx (48)

is the total Hamiltonian and the equations of motion are given by (21). Once again we
can simplify the total Hamiltonian using the fact that second-class constraints (46) hold as
strong equations and we find

HKT =Kr{qx — K Px (49)

for the Dirac Hamiltonian density.
For the Dirac bracket we need the inverse of the Poisson brackets of the constraints (47).
The solution of equations (24) is given by

JKll(x, y)=0
J20e,y) = - g —y)
K (X)

x 50

Py = [T (0)
i (§)

22 _ 4 N . Yoge
J&(x, y) = Krr(x)G(x y) —28(x y)f o (8) dg

whered is the Heaviside unit step function. The Dirac bracket for the Lagrangian (43) now
follows directly from (23).

7. Non-local Hamiltonian operators for RHMA ,

The correspondence (27) enables us to express the result (50) for the Dirac bracket of the
degenerate Lagrangian (43) in the form of the Hamiltonian operator

Px . _1
0 =D
Ker

—1Px qx -1 —19x
o Junkea =D+ D
* Krr Krr * * Krr
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whereD ! is the inverse oD,. We refer the reader to [14] for the definition and properties
of D 1; in particular

Dxlf=;</;—[:o) £ d

and the integrals are taken in the principal value sense. This Hamiltonian operator
is therefore non-local. Once again, the appearance of the arbitrary functionthe
Hamiltonian operator (51) is a consequence of the existence of arbitrary functions in the
master Lagrangian (10).

The most important member of the family of non-local Hamiltonian operators (51) is

given by
0 psD !
Ji= * 52

1 < Dx_lpx Gx Dx_l + Dx_qu ) ( )

which has a linear dependence ppandg,. It results from the Lagrangian
1 1
L1=— <Pt qx — qu2> (53)

with the simplest choice of arbitrary functian= %rz. It will also be useful to rewrite the

operator (52) for the system of variables consisting @nd ¢
F 0 D tu,D? (54)
v _Dx_luxx Dx_l CIX Dx_l + Dx_qu

which follows from the change of variable = u, .

In section 7.3 we shall find that the non-local Hamiltonian operator (52) has a natural
interpretation, namely the Kac—Moody algebra corresponding to this operator is the algebra
of vector fields and functions on the unit circle. This operator is also distinguished as the
only element of the family of non-local Hamiltonian operators that survives in the case of
the real Monge—Amgre equation with constant right-hand side.

7.1. Jacobi identities

The proof of the Jacobi identities fof, of (51) proceeds along the general lines indicated
in section 5.1 but the properties &f ! must be carefully considered. For ease of writing
we letp = (k.,)~* and from (51) we have

. ( ppx D0 >
‘ D (op.am) + pg: D70 + D7 (pg,0) (55)
Lo =ppxn AD7*0 +pg.06 AD 0.

The variational derivatives of, are given by

81 -1 -1
7 =(pr—p) (e ADO+ 0 AO) +rpan A DO
+(r?p,), 0 A D0 — r?p,6, A DO 6
* 56
81 -1 -1
a—z—pmn/\Dx G—p,.(nx/\Dx 9~|—r}/\9)
q

—(o+rp)b ADT'0 = (p+rp) 6 ADTE
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which results in a total derivative for the tri-linear form (31)

LI = —{D; (pxn + q.:0) Alpn + (o +rp,) 0] A D716}

X

completing the proof of the Jacobi identities.

7.2. Hamilton’s equations

The Hamiltonian functionH, appropriate to the non-local Hamiltonian operator (51) is
given by a local expression which is simply the integral of the total Hamiltonian density of
Dirac in (49) and once again we have the Lenard—Magri recursion relation

Jo 8H, = J, 8H, (57)

where ¢ is another arbitrary function op,r. All non-local Hamiltonian operators are
compatible with each other.

7.3. The Kac—Moody algebra

Hamiltonian operators associated with integrable nonlinear evolution equations give rise to
Kac—Moody (KM) algebras [15]. Two compatible Hamiltonian operators actually yield an
infinite hierarchy of KM algebras. There is an explicit algorithm for the construction of
KM algebras from the Hamiltonian operator which is essentially based on Fourier analysis.
Since the non-local operator (52) depends linearlypgnand ¢, Fourier analysis makes
sense and the operator (52) is suitable for consideration as the backbone of a possible KM
algebra. The nonlinearities in the local operator present a formidable obstacle to any similar
discussion of (29). Using

1 1 i 1 1 i
we find that the KM algebra appropriate to the operator (52) is given by

[va Pn] = 0
[va Qn] =m Pern (58)
[Qm’ Qn] = (m - I’l) Qern

which can be recognized as the algebra of functions and vector field$.ofhus we can
use the representation

d
P —n —m+1
n =2 Qm =1Z 7dz

for the algebra underlying the simplest non-local Hamiltonian operator (52).

7.4. Compatibility

Two Hamiltonian operators are compatible if their linear combination with constant
coefficients is also a Hamiltonian operator. In the case where one of the Hamiltonian
operators belongs to the class of (29) and the other one to (51), the check of compatibility
requires that

Cue =L, 81, +L.81,=0 (59)
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modulo a divergence. It turns out that only the simplest local and non-local opergtors
and J; are compatible. From equations (33), (34), (55) and (56) it follows that

1
Cor= (pz 0N [(‘erx + pxnx) A Dx719 + D{l(l)xﬁ + CIXQ) A Ox])

which establishes the compatibility o and J;. In all other cases local and non-local
Hamiltonian operators are incompatible.

8. Recursion operators

Since there are infinitely many compatible Hamiltonian operators of both local (29) as well
as non-local (51) variety, there exist infinitely many opportunities for constructing recursion
operators of either type or both. In the first category we have

D, pt 0
1 Hq
R =0, "= (60)
(wf) Gpa
Mq /) Px Mg
which generalizes our earlier result [1], while in the latter category we find
b 0
Krr
Re=JoJ 1= L . (61)
()] noteo
Px Krr X Kyr
These recursion operators satisfy the Lax equation
R, =[R, Al (62)
where
0 D,
A= (63)

2
~9p, 2% p,
x Px
is obtained from the Freéh derivative of the flow (8).

However, there is also the possibility of constructing recursion operators by the
composition of Hamiltonian operators of both local and non-local types provided they are
compatible. We have found thdg and J; form a compatible pair. Thus we are led to the
recursion operator

1 1
D,—D,— 0
R =JoJ, L= e (64)
Gxx Grx 1 1
——:,’DX—DX—3 —D,— D,
Px Py Px Px
and we find that a remarkable factorization takes place
R=EE (65)
where
1
D, — 0
e=| (66)
Grx 1
0 D,
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is a first-order operator. This situation is familiar from third-order Hamiltonian operators

for two component equations of hydrodynamic type [7]. The recursion operator obtained
from a composition of third and first-order Hamiltonian operators factorizes to yield the

first-order recursion operator of Sheftel'. Similar considerations suggesttitaelf is a

good recursion operator. It is readily verified tifags well as its inverse

D1 0
&t= ( {7; ' -1 -1 ) (67)
QXDX - Dx qx Dx Px

satisfy equation (62) and are therefore good recursion operators. Finally, we should remark
that the recursion operators (60) and (61) can also be factorized, however, unlike the case
of (65), the factors consist of different operators and each one is not a recursion operator.

8.1. Infinite sequences of Hamiltonians

There are several infinite families of conserved quantities that one can obtain by repeated
application of the recursion operators we have presented in section 8. Corresponding to the
recursion operatof we haveF which is defined by

S=J, th=FF (68)

which yields infinite sequences of gradients of conserved quantities. We find tajiven
by

F= ( Dpe DMs— s ) (69)

0 Dx Dx_l

and a simple example of the infinite sequence of conserved quantities that it generates is
the following:
F F 1,
Pgx—> > P G (70)

Depending on the starting point one can construct infinitely many such sequences. For
example,S generates a family of local as well as non-local conserved quantities according

to the scheme
1 1 1 y 142
2 Px Px DPx 2 Px (71)

S, 9% px 5, 3a pxD [P D (gpy)] A
and there are infinitely many different combinations of such sequences. The above
expressions for the conserved Hamiltonian densities can be simplified by discarding
divergences, however, this form is useful because it suggests the generic term for the
conserved quantity obtained by repeated applicationsS.of The determination of the
cardinality of the conserved Hamiltonians which are in involution with respect to Poisson
brackets defined by both types of Hamiltonian operators is complicated because of the
appearance of arbitrary functions in these Hamiltonian operators.

8.2. Higher flows

Starting with the flow (8) we should obtain higher flows for RHiMtrough the application
of any one of the recursion operators (60), (61), (66) or (67) on the vector field (8).
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However, in all of these cases an elementary calculation shows that the resulting higher
flow is simply

Piqx —q: px =0

the real homogeneous Monge—Aémp equation back again.

9. Symplectic form of RHMA,

The principal geometrical object in the theory of symplectic structure is the symplectic
2-form w which is closed

do =0 (72)
and by Poinca&'s lemmaw can be written as
o = do (73)

in a local neighbourhood. On the other hand the Hamiltonian operator maps differentials
of functions into vector fields which works in the opposite direction. Thus the statement of
the symplectic structure of the equations of motion consists of

iyw=dH (74)

which is obtained by the contraction of the symplectic 2-fapnwith the vector fieldX
defining the flow.

For systems with finite, and furthermore even number of degrees of freedom, the
symplectic 2-form is the inverse of the Hamiltonian structure functions which is the analog
of the Hamiltonian operator. However, the generalization of the notion of an inverse to
systems with infinitely many degrees of freedom is not immediate. That is, the symplectic
2-form is obtained by integrating the density [16]

w = %du’ /\K,'j dl/tj (75)

over the spatial variable, whei is the ‘inverse’ ofJ. Given Hamiltonian operatar, its
‘inverse’ may be defined by

T*Ky; = Ky J" =8 (76)

but equation (76) is an operator equation which acts on gradients of functions. On the other
hand, quite generally there exist Casimir functions which are annihilated by the Hamiltonian

operator. Such functions, cf equation (37) above, must be excluded in the definition of the
‘inverse’ in (76).

Our approach to the construction of Hamiltonian operators is based on the construction
of Dirac brackets for systems subject to second class primary constraints. It is evident
from (23) that the essential element in the Dirac bracket is the inverse of the matrix of
Poisson brackets of the constraints. On the other hand, according to (76) we must invert
again to obtain the symplectic 2-form, thus we have simply

Kix(x)8(x — y) = {i (x), dr(y)} (77)

that is, the inverse of the Hamiltonian operator can be obtained directly from the Poisson
bracket of second class constraints.
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9.1. Symplectic 2-forms

The Hamiltonian operator (29) can be inverted in a straightforward way subject to the
provision above:

Mqq 1 _1Mq9q; _1MgP
Ky = i (79
ﬂl)x—l 0

q

or we can immediately read it off from equations (17) and (77). Equation (78) is also a
statement of the non-degeneracy of the Hamiltonian operator (29). Hence from (75) and
(78) we find the symplectic 2-form

wy, = % (px dq —(qx dp) A d(Dx_lp) (79)

corresponding to the local Hamiltonian operator (29). It can be verifiedufhas a closed
2-form by direct calculation. We had found [1] that in theg variables the inverse of

Jo is a local operator and this is true for the family of local Hamiltonian operators (29) in
general. The symplectic 2-form assumes the simpler expression

Wy = )Luxuk (Uxx dq —qx dux) A du (80)
in these variables. By invoking the Poinédemma, in a local neighbourhood we can write
wy = doy, a, = 0py d(D;lp) (81)

and we note that the coefficient of the 1-foam is also the Casimir (37) for the Hamiltonian
operatorJ,. The closure of the symplectic 2-form (79) is equivalent to the satisfaction of
the Jacobi identities by the Hamiltonian operator (29).

For the non-local Hamiltonian operator (51) the inverse is given by the local operator

K, K, K,
_ngpx - Dﬁ*p; FD
K, = L ¥ ! (82)
D, 0
Px

which also follows from (47) and (77). Then from (75) and (82) the symplectic 2-form
appropriate to the non-local Hamiltonian operator is given by

N 1
We = Kyp <_q2dpx +dqx>/\dp
p Px

X

=K, dr Adp (83)

so that the verification thab, is closed is immediate. In a local neighbourhood we can
write

W, = da, a, =k, dp (84)

using the Poincé& lemma.
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9.2. Symplectic form of equations of motion

With the symplectic 2-forms (79) and (83) we need to check that (74) are satisfied. For
this purpose we recall that given a 2-form = a(v, v,) dv A dv, and the vector field

X = m(v, vy) d/9v, we haveiyw = (2am, + ma,) dv. If we considerw, with k = %rz,

from this expression we get

2
qx 3, px 95 9 N

in%;‘Zz_idQX_i( a)q};dp/\dpx""i( ‘>1dpAdqx
px g 3

2 2
q q q q q
= ——dgx — [2)‘2% +qx (’;) - ’;pxx] dp — 5 dp,
p p2). p; p;

X X X

2
—d (-1%) — dH., (85)

2 px 2
where we have discarded a total derivative. Similarly, in order to check that = dH,,
we note that given the 2-forrw = a(v, vy, ...)dv A d(D;lv) and the vector field
X = m(v, vy, ...)3/dv, we haveixw = —amd(D 1v) — mD(adv). The application
to the 2-form (79) yields

ix Wy, = _quxil(qude) + QxDxil(quxdp)
=qoy (deq - CdeP) = dHu (86)
using equation (38).

9.3. Witten—Zuckerman 2-form

Time plays a privileged role in Hamiltonian mechanics. While this presents no problem for
systems with finitely many degrees of freedom, in field theory it has the disadvantage of non-
covariance. In order to remedy this situation Crnkoand Witten and Zuckerman [8] have
introduced the conserved current 2-form which provides an elegant covariant formulation
of Hamiltonian structure. For Monge—Arape covariance is particularly necessary because,
as we noted in the introduction, the choice of time coordinate for RHMAjuite arbitrary.

The simplest way to obtain the Witten—Zuckerman current 2-ferfor the Lagrangian
(11) is to first construct the 1-forima which follows from the first variation of the Lagrangian
andq is related tow as in (73). Assuming the equations of motion (6), the first variation
reduces to a conservation law

8Ly, =ad,  +af (87)
where
oL oL
of, = M su + ASq:—qx)L,hSu—{—)\ﬁq
ou, 9q;
(88)
x g s  gibu
ot = = Ay, )
A o, 94, q « 4t

Finally, the current 2-formw, for RHMA; is given by

o, = 80" = Ay, (g Su A Suy — uyy Su A 8q)

st q? (89)
', =0a" = Ay | —— Su Aduy + g, Su A dq

M)CX
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and using the equations of motion we can readily verify that it satisfies
Sw* =0 o, =0 (90)

where o ranges over two values and x. The Witten—Zuckerman 2-form is closed and
conserved. For the Lagrangian (43) a similar procedure yields
o' =Ky 8r NSp
(91)
W' =Ky 8p A Sr
which also satisfies equations (90). A useful relation in checking the conservation law for
the 2-form (91) is the dKdV, or the Riemann equation form of RHMA

ry=rry (92)

which follows from the results of [18].

We note that the time components of the Witten—Zuckerman 2-forms (89) and (91) for
RHMA that follow from the Lagrangians (11) and (43) are precisely the symplectic 2-forms
(80) and (83), respectively. The use of the notatidior d follows [8] and is restricted to
this section only.

10. Lax pair for RHMA

We have seen that the recursion operators of section 8 satisfy the Lax equation (62) but
these are not useful Lax pairs. We need to cast RHN®o the form of a zero-curvature
condition [17]

U —V,—[U,V]=0 (93)

which is the basic element in the solution of of completely integrable systems using
the inverse scattering transform. The zero-curvature condition forSih@, R)-valued
connection 1-form given by the pair

q
by Dy /\p—i qx
4px— ?pxx . —* q49x — 72q”r - 72qr _)\i
x * Px Dy Px

(94)

provides such a formulation of RHMA But in this case the potential has a quadratic
dependence on the spectral parametewhich has so far not been considered for an
application of inverse scattering techniques. TbisV pair is therefore not immediately
amenable to treatment by the method of inverse scattering.

11. Multi-Hamiltonian structure of RMA »

The infinite classes of Hamiltonian operators we have obtained for RHkluce to

the compatible pait/y and J; of Hamiltonian operators (30) and (52) when we consider
the Hamiltonian structure of RMAwith non-zero constant right-hand side in (3). The
corresponding pair of symplectic 2-forms are also unchanged and the only modification
comes in the conserved quantities. The infinite sequence of conserved Hamiltonians for
RMA; are those which reduce to the RHMAdamiltonians fory = 3¢ andx = 1r2 in
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the limit K — 0. Thus the basic Hamiltonian densities entering into the Lenard—Magri
scheme

Jod HY = 118 HE (95)
are given by
1 1
Hi = 5a°pe+ KD 7p Hp = ~3, (¢.> +K) (96)

and the infinite sequences of conserved Hamiltonians which are in involution with respect
to Poisson brackets defined by and J; are modified for RMA. For example, by the
application of the recursion operator (66) & we get

1 q 2 Kp 2
K _ qx 7 FPxx 97
" =2, [(px)j T2 &7

which, up to a divergence, is the same as the RHN4amiltonian density in the sequence
(71) for K — 0. Repeated application of the recursion operator (66) yields

1 1
Pi gy — Gi px = —Dy {pr [ - K - pDt (prx‘l)]} (98)

X X

for the RMA; hierarchy of equations.

The elliptic case of (3) is equivalent to the equation for minimal surfaces while the
hyperbolic case corresponds to the Born—Infeld equation [18]. Through the appropriate
change of variables the rich multi-Hamiltonian structure of the Born—Infeld equation [19]
carries over into RMA which includes the Hamiltonian operatafg and J;.

12. Ur-RHMA ,

The local and non-local family of Hamiltonian operators for RHMAave scalar
counterparts for the Ur-RHMAequation (4) which can be written as

k
u =" (99)
Ux
in the form of an evolution equation. With the definition
2k

this equation can be identified as
U+UU,=0

which is the dispersionless KdV, or Riemann equation. Ur-RHMAmMIts infinitely many
conserved quantities

Hn = I/lxn (100)
as well as infinitely many local Hamiltonian operators
ke 1
Jy = D (101)

U Uy * U Uy
provided the various constants are related by
n=2a+1) 20(x + 1) (20 + Dk, = —k
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so that the equation of motion (99) assumes the form of Hamilton’s equations (103). Scalar
Hamiltonian operators of this type were first considered by Vinogradov [20]. The family of
non-local Hamiltonian operators

Jg =kgu?D u? (102)

which is due to Sokolov [21] is also appropriate to the Ur-RHMguation. In this case the
conserved Hamiltonian densities are also given by (100) but now the constants are related

by

n=-28 2B(2B + Dk = (B + Dk
and we find that Ur-RHMA is cast into Hamiltonian form with

Uy = Jy SHogio = Jg SH_2g (103)
which again results in an infinite set of Hamiltonian structures. In (101) and (102) we have

thegg-components of the RHMAmatrix Hamiltonian operators (29) and (51), respectively.
The recursion operator obtained by the composition of these Hamiltonian operators

1 1 1
Rep = D D,—; 104
4 ulge w Py b (104)
can be factored as in (65) with
1 1
Eup = Dy — (105)

U Uy Uy
resulting in a Sheftel’-type recursion operator for Ur-RHMA

13. The RHMA in arbitrary dimension

In order to write RHMA, as a system of nonlinear evolution equations it will be useful to
introduce a compact notation. For this purpose we shall consider the determinants of the
(n — 1) x (n — 1) matrices

q1 Uia ce Uik s Ulp—1
q2 U1 - U2k T U2p-1
Af = (=1 det (106)
—_—
gn-1 Up—11 - Up—1k - Up—1n-1

obtained by deleting the’0row andk" column in the matrix of second derivatives. The
latter is indicated by a hat over the omitted terms. In particularkfer O we have the
Monge—Amgre operator im — 1 dimensions

A=-A"#£0

which is a statement of non-degeneracy of RHMAhe system of evolution equations for
RHMA,, is given by

ur=4gq
1. (107)
qtzzzgqﬂﬁl i=12....n—1

where ¢; = d¢g/dx’ and henceforth we shall reserve the indexo range ovem — 1
independent variables while continuing the use of the summation convention over repeated
indices. Thus the vector field

a 1 -0

X=qg— + —qA— 108
4o, A4 3 (108)
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defines the flow for RHMA im dimensions.
Equations (107) are cast into the form of Hamilton’s equations with the Hamiltonian
operator

0 q
WA
T l 2Di+Di 2
wA uwA wA

wherep is an arbitrary differentiable function @f alone and prime denotes derivative with
respect to the argument. The Hamiltonian function is given by

H=pA (110)

and once again, there exist infinitely many conserved quantities (110) and Hamiltonian
operators (109) associated with RHMA indimensions. However, this is not the full
extent of the Hamiltonian structure of (107) as we have not considered non-local operators,
or the dependence @f on other variables. Concerning the latter point we note that

H=pu(g,us,uz,...,u,—1)A (112)
is also conserved for the system (107). Hence the number of independent variables entering
into the arbitrary functiorw can be increased considerably with an attendant increase in the
number of Hamiltonian operators which is already infinite in (109).
In order to present the symplectic structure of (107) we need the inverse of (109) and
subject to the provisions of section 9, we find that it is again a local operator. Then from
(75) we get the symplectic 2-form

w=""(Adu A du; + Adg A du) (112)
q

which can be directly verified to be a closed 2-form. In a local neighbourhood we can write
it as the exterior derivative of a 1-form which is given by

oa=0 Adu (113)

where o is again related tqu through (38) andr A is the Casimir for the Hamiltonian
operator (109).

14. Geodesic flow for CHMA

The Hamiltonian structure of the geodesic flow for CHMA is very similar to that of RHMA.
Semmes [10] has introduced the notion of geodesic4d/otthe space of smooth real-valued
functions on/ x M where[ is a real interval. FoiF € N'(I x M) and (39F)" # 0O the
vector field
- 1 -
X:qj1+nU%F)_AanM]Ef
dF [(03F)"] dq

defines geodesics ofV. The holomorphic exterior derivative is denoted &y Here as
well as in the following, it will be understood that volume forms &henclosed by square
parantheses automatically carry the Hodge star operator so that the result is a 0-form. The
discussion of the symplectic structure of CHMA by Semmes is based on&hkeik2-form

(114)

185F
2i
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which is not the relevant object that emerges from an examination of the Hamiltonian

structure of the flow (114). Our approach to the problem of the geodesic flow for CHMA

will be in the framework of dynamical systems with infinitely many degrees of freedom and

the resulting symplectic 2-form is given in (118). The advantage of our approach lies in

the direct proof it furnishes for the complete integrability of the geodesic flow for CHMA.
The geodesic flow for CHMA satisfies Hamilton’s equations

F; F
=X = J8H, 115
( qr ) < q ) el (115)
where X denotes the vector field (114). The Hamiltonian density is given by
He = n[(9F)"] (116)
and the Hamiltonian operator is
q
0 .
w (@9 F)"]
Je = = 3 1 = = 1
- a ddF)" 1%
9 Re nq[qA_( )2 /\8]—[8/\"(]8(]/\(?a )2 ]
w [0 F)] w [@3Fy] w [(03Fy]

(117)

whereu = u(g) is an arbitrary differentiable function of its argument.

The inverse of Hamiltonian operator (117), subject to the restrictions of section 9, is
again a local operator which yields the symplectic 2-form

!/ _ _ 1 _
we =" {Re(dF A[dg A@IF)" P AG]dF) + = [(30F)"] dg A dF} (118)
q n

and for integrable complex structugecan be simplified by expressing the exterior derivative
in terms ofd, 3. The statement of the symplectic structure of the geodesic flow for CHMA
is given by (74). The 2-form (118) is closed as one can show readily by direct calculation.

However, it is more instructive to note that by invoking the Poidckemma in a local
neighbourhood we can write

we = dorc ac = %G(q) [(00F)"] dF (119)

whereo again satisfies equation (38).
There are infinitely many symplectic 2-forms, compatible Hamiltonian operators and
conserved Hamiltonians for the geodesic flow for CHMA.

15. Conclusion

We have considered the multi-Hamiltonian structure of various real homogeneous Monge—
Ampeére equations and found that quite generally they adrfiititely manysuch structures.

In particular for RHMA we have shown that there exist infinitely many Hamiltonian
operators of both the local and non-local variety. The simplest Hamiltonian operator of
the latter type leads to the Kac—Moody algebra of vector fields and functions on the unit
circle. For Ur-RHMA, we have the scalar version of the RHMAlamiltonian operators.
Finally, we have shown that local Hamiltonian operators are generic to RHMAus the

real homogeneous Monge—Akme equation is a system with infinitely many Hamiltonian,

or symplectic structures in the theory of integrable systemarbitrary dimension
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