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Abstract. The variational principle for the real homogeneous Monge–Ampère equation in two
dimensions is shown to contain three arbitrary functions of four variables. There exist two
different specializations of this variational principle where the Lagrangian is degenerate and
furthermore contains an arbitrary function of two variables. The Hamiltonian formulation of
these degenerate Lagrangian systems requires the use of Dirac’s theory of constraints. As
in the case of most completely integrable systems the constraints are second class and Dirac
brackets directly yield the Hamiltonian operators. Thus the real homogeneous Monge–Ampère
equation in two dimensions admits two classes of infinitely many Hamiltonian operators, namely
a family of local, as well as another family non-local Hamiltonian operators and symplectic 2-
forms which depend on arbitrary functions of two variables. The simplest non-local Hamiltonian
operator corresponds to the Kac–Moody algebra of vector fields and functions on the unit circle.
Hamiltonian operators that belong to either class are compatible with each other but between
classes there is only one compatible pair. In the case of real Monge–Ampère equations with
constant right-hand side this compatible pair is the only pair of Hamiltonian operators that
survives. Then the complete integrability of all these real Monge–Ampère equations follows
by Magri’s theorem. Some of the remarkable properties we have obtained for the Hamiltonian
structure of the real homogeneous Monge–Ampère equation in two dimensions turn out to
be generic to the real homogeneous Monge–Ampère equation and the geodesic flow for the
complex homogeneous Monge–Ampère equation in arbitrary number of dimensions. Hence
among all integrable nonlinear evolution equations in one space and one time dimension, the
real homogeneous Monge–Ampère equation is distinguished as one that retains its character as
an integrable system in multiple dimensions.

1. Introduction

Recently we had found [1] that the real homogeneous Monge–Ampère equation (RHMA)
in two dimensions, hereafter to be referred to as RHMA2, admits generalized Hamiltonian
structure. In field theory this type of structure arises for degenerate Lagrangian systems
where we must use Dirac’s theory of constraints [2] to cast the problem in Hamiltonian form
and finds its zenith in the theorem of Magri [3] for completely integrable bi-Hamiltonian
systems. We refer the reader to [4] for an exposition of this subject. In this paper we shall
show that RHMA and the geodesic flow for the complex homogeneous Monge–Ampère
equation (CHMA) admit infinitely many Hamiltonian structures in arbitrary dimension. By
Magri’s theorem this result shows the complete integrability of RHMA and, in turn, RHMA
provides the richest illustration of Magri’s theorem.

It will be useful to first list the various homogeneous Monge–Ampère equations that we
shall discuss in order to fix the notation. On a real manifoldM of dimensionn, RHMAn

is given by

detuαβ = 0 α = 0, 1, . . . , n − 1 (1)
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where

uαβ ≡ ∂2u

∂xα∂xβ

is the matrix of second derivatives. We shall takex0 = t and write (1) as a first-order
system of nonlinear evolution equations. Without loss of generality we may assume

detuab 6= 0 a = 1, . . . , n − 1 (2)

which is a statement of the non-degeracy of (1). In 1+ 1 dimensions we have the simplest
case of real Monge–Ampère equations:

uttuxx − u 2
tx = −K

K = ±1, 0
(3)

which is hyperbolic, elliptic, or homogeneous (RHMA2), respectively. We shall show that
two types of Hamiltonian operators exist for RHMA2, a family of local (equation (29)), as
well as non-local (equation (51)) operators, both of which contain an arbitrary function of
two variables.

We shall start with a discussion of the variational principles underlying RHMA2. The
Lagrangian which results in the equations of motion for RHMA2 contains three arbitrary
functions of four variables. We shall concentrate on two qualitatively different classes
of Lagrangians which are specializations of the master Lagrangian (10) for RHMA2,
cf equations (11) and (43) below, both of which contain arbitrary functions and which
are furthermore degenerate. That is, the passage to a Hamiltonian formulation of these
degenerate Lagrangian systems gives rise to second class constraints as in the case of most
completely integrable systems [5]. The resulting two families of Hamiltonian operators, cf
equations (29) and (51) contain all the information in the Dirac brackets of RHMA2. These
Hamiltonian operators are infinite in number as they contain arbitrary functions which make
their first appearance in the Lagrangian formulation of RHMA2 which, in turn, is related to
its character as a universal field equation [6]. Any pair of local, or non-local Hamiltonian
operators are compatible, however, a local Hamiltonian operator is not in general compatible
with a non-local Hamiltonian operator with the exception ofJ0 of (30) andJ1 given by
(52). These two Hamiltonian operators determine part of the multi-Hamiltonian structure
of the real Monge–Amp̀ere equation (3) when the right-hand side is a non-zero constant.

We shall show that the Kac–Moody algebra that corresponds to the simplest non-local
Hamiltonian operator (52) for RHMA2 consists of the algebra of vector fields and functions
on S1. The family of local Hamiltonian operators can be brought to the standard form
of a first-order operator by a Miura transformation. The recursion operator obtained by a
composition of the simplest local and non-local Hamiltonian operators is Sheftel’-type [7],
that is, it can be written as the square of a first-order operator which is a good recursion
operator itself. Finally, we shall present the symplectic structure of RHMA2 which is dual
to these Hamiltonian structures. We shall also show that the symplectic 2-forms obtained
in this way are the time components of the Witten–Zuckerman [8] 2-form that is the main
geometrical object in the covariant formulation of symplectic structure.

In the theory of developable surfaces there is an equation which may be called Ur-
RHMA2

ut ux = k (4)

where k is constant, as it is well known [9] that solutions of (4) must satisfy RHMA2.
We shall discuss the Hamiltonian structure of Ur-RHMA2 in section 12 and show that
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the Hamiltonian operators appropriate to this equation consist of a scalar version of the
Hamiltonian operators for RHMA2 which lends further credence to its name.

We shall show that RHMA is an example of a nonlinear evolution equation that is
integrable in anarbitrary number of dimensions, see [6] for other universal field equations
with this property. In section 13 we shall find that some of the remarkable results we
shall report on the Hamiltonian structure of RHMA2 hold for RHMAn as well. Hence
RHMA2 will serve as the prototype for the discussion of the symplectic structure of all
real homogeneous Monge–Ampére equations. The Hamiltonian structure of the complex
Monge–Amp̀ere equation is quite different from that of RHMA and will not be considered
in this paper. On the other hand the Hamiltonian structure of the geodesic flow defined by
CHMA [10], which will be discussed in section 14, is very similar to that of RHMA.

2. First-order evolutionary form of RMA 2

For the Hamiltonian treatment of real Monge–Ampère equations we need to rewrite them
as a system of nonlinear evolution equations which is first order in time. For RHMA2 this
is most conveniently accomplished by introducing the definitions

ux = p ut = q (5)

and accordingly the equations of motion are either given by

ut = q qt = 1

uxx

(
q 2

x − K
)

(6)

or

pt = qx qt = 1

px

(
q 2

x − K
)

(7)

but we note that this split of (3) into either one of these pair of evolution equations is
not unique. Thus we have necessarily introduced a degree of freedom over and above that
present in (3) itself. We shall return to this point in section 5.3 on the Miura transformation.

Henceforth we shall use the notation{ui; i = 1, 2} for the first-order variables where
u1 will stand for eitheru, or p andu2 ≡ q. Then the vector field defining the flow for (3)
is given by

Xu = q
∂

∂u
+ q 2

x − K

uxx

∂

∂q
Xp = qx

∂

∂p
+ q 2

x − K

px

∂

∂q
(8)

respectively. We shall cast the equations of motion following from (8) into the form of
Hamilton’s equations

ui
t = X(ui) = {ui, H } = J ik δkH (9)

where the Hamiltonian operatorJ defining the Poisson bracket is a skew-symmetric matrix
of differential operators satisfying the Jacobi identities andδi denotes the variational
derivative with respect toui .

3. Variational formulation of RHMA 2

We shall find that the Hamiltonian operators for RHMA2 are doubly infinite in number.
The reason for the existence of such a multitude of Hamiltonian structures can be traced
back to the fact that the variational principle (10) for the real homogeneous Monge–Ampère
equation contains arbitrary functions. Our approach to the construction of the Hamiltonian
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operators as Dirac brackets appropriate to degenerate Lagrangian systems will make it
manifest that the existence of arbitrary functions in Lagrangians for RHMA2 is responsible
for their appearance in the Hamiltonian operators.

It can be verified directly that the equations of motion following from the variational
principle

δI = 0 =
∫

L dt dx

with Lagrangian density

L = l1 utt + l2 utx + l3 uxx

lα = lα

(
ut , ux,

utt

utx

,
utx

uxx

)
α = 1, 2, 3

(10)

yield RHMA2 in the form of (3). There are three arbitrary functions of four variables in
this Lagrangian. We have not explicitly indicated the possible dependence oflα on the third
combination of the ratio of second derivatives above as it is derivable from the others. It
appears that this is the richest example of a variational principle for any nonlinear partial
differential equation. Fairlie, Govaerts and Morozov [6] have considered the hierarchy of
field equations where the equations of motion at any level are proportional to the Lagrangian
at the next. They pointed out that this is a finite hierarchy ending in ‘universal field
equations’. RHMA2 is precisely such a universal field equation and this is the reason why
we should expect arbitrary functions in the Lagrangian (10).

In the variational formulation of (6) we shall consider various specializations of the
arbitrary functionslα in (10) which will still contain arbitrary functions of a more specialized
variety. It is, however, important to remember that the enormous number of possibilities
offered by the master Lagrangian (10) is the source of all the results we shall present below.

4. Local Dirac bracket for RHMA 2

A useful specialization of the Lagrangian density (10) that results in the first-order equations
of motion (6) for RHMA2 is given by

Lλ = λ qt − λux
(ut − q) qx (11)

where

λ = λ(ux, q) λuxux
6= 0 (12)

is a twice differentiable arbitrary function of two variables. The canonical momenta
appropriate to this Lagrangian are given by

π1 ≡ πu = ∂Lλ

∂ut

= −λux
qx

π2 ≡ πq = ∂Lλ

∂qt

= λ

(13)

subject to the canonical Poisson bracket relations

{πi(x), uk(y)} = δi
k δ(x − y) (14)

with all others vanishing. But the momenta (13) cannot be inverted for the velocities, or
alternatively the Hessian vanishes

det

∣∣∣∣ ∂2Lλ

∂ui
t ∂uk

t

∣∣∣∣ = 0 (15)
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and we have a degenerate Lagrangian system. Thus the passage to the Hamiltonian
formulation of the Lagrangian (11) requires the use of Dirac’s theory of constraints.

Following Dirac we introduce the two primary constraints that result from (13)

φ1 = πu + λux
qx

φ2 = πq − λ
(16)

and calculate their Poisson brackets using the canonical Poisson bracket relations (14). The
result

{φ1(x), φ1(y)} = qy λuyuy
δy(x − y) − qx λuxux

δx(y − x)

{φ1(x), φ2(y)} = λuy
δy(x − y) − λux

δx(y − x) − qx λqux
δ(y − x)

{φ2(x), φ2(y)} = 0

(17)

shows that the constraints (16) are second class as they do not vanish modulo the constraints.
This is a typical situation for integrable systems as in the example of KdV, or shallow water
equations [5]. I am grateful to C A P Galvão [11] for pointing out to me that one should
not simplify the Poisson brackets of the constraints (17) using the rules for manipulating
distributions as such ‘simplifications’ often lead to incorrect Dirac brackets.

The total Dirac Hamiltonian is given by

HT =
∫ (

πi u
i
t − L + ciφi

)
dx (18)

whereci are Lagrange multipliers and summation overi = 1, 2 is implied. The condition
that the constraints are maintained in time

{φi(x), HT} = 0 (19)

gives rise to no further constraints which would have been secondary constraints.
Instead, using equations (17), we find that the Lagrange multipliers are determined from
equations (19)

c1 = q c2 = q 2
x

uxx

and they do not depend on the choice of the arbitrary functionλ. This is expected since
the constraints and therefore the total Hamiltonian is linear in the momenta, the correct
equations of motion will result only if the Lagrange multipliers are simply the components
of the vector field (8) for the flow. Finally from (18) we find

Hλ,T =
∫ (

q πu + q 2
x

uxx

πq − q 2
x λ

uxx

)
dx (20)

for Dirac’s total Hamiltonian. The check that with this total Hamiltonian all the equations
of motion are satisfied is straightforward and we can summarize all of them in Hamilton’s
equations

At = {A, Hλ,T} (21)

where A is any functional of the canonical variables. There is, however, one further
simplification that we can carry out because in Dirac’s theory second class constraints
hold as strong equations. This fact gives us the choice of eliminating the momenta from
equations (13). Then we can write

Hλ,T = q qx λux
(22)

for the total Dirac Hamiltonian density.
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Given any two differentiable functionals of the canonical variablesA andB, the Dirac
bracket is defined by

{A(x), B(y)}D = {A(x), B(y)} −
∫

{A(x), φi(z)}J ik(z, w){φk(w), B(y)} dz dw (23)

whereJ ik is the inverse of the matrix of Poisson brackets of the constraints. The definition
of the inverse is simply∫

{φi(x), φk(z)}J kj (z, y) dz = δ
j

i δ(x − y) (24)

which results in a set of differential equations for the entries ofJ ik. Starting with the
Poisson bracket relations (17) we find that equations (24) can be readily solved to yield

J 11
λ (x, y) = 0

J 12
λ (x, y) = − 1

λuxux
uxx

δ(x − y)

J 21
λ (x, y) = 1

λuxux
uxx

δ(x − y)

J 22
λ (x, y) = − 2qx

λuxux
u 2

xx

δx(x − y) −
(

qx

λuxux
u 2

xx

)
x

δ(x − y)

(25)

for the inverse of (17). It will be convenient to rename the arbitrary functionλ as µ

according to

λuxux
≡ 1

q
µq (26)

to simplify the calculations that will follow.

5. Local Hamiltonian operators for RHMA 2

The transition from the Dirac bracket to the Hamiltonian operator is given by

{ui(x), uk(y)}D = J ik(x, y) ≡ J ik(x)δ(x − y) (27)

and from (27) and (25) it follows that the Hamiltonian operator corresponding to the
degenerate Lagrangian (11) is simply

Jµ =


0

q

µq uxx

− q

µq uxx

q qx

µq u 2
xx

Dx + Dx

q qx

µq u 2
xx

 (28)

which contains the arbitrary functionµ of two variables. Two particular choices of this
arbitrary function, namelyµ = 1

2q2 andµ = uxq result in the bi-Hamiltonian structure of
(3) reported in [1].

Under the change of variablep = ux the Hamiltonian operator (28) is transformed

Jµ =


0 Dx

q

µq px

q

µq px

Dx

q qx

µq u 2
xx

Dx + Dx

q qx

µq u 2
xx

 (29)
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which is the form of the local Hamiltonian operator for RHMA2 that we shall use henceforth.
The most important element of the family of Hamiltonian operators in (29) is given by

J0 =


0 Dx

1

px

1

px

Dx

qx

p 2
x

Dx + Dx

qx

p 2
x

 (30)

which corresponds to the choiceµ = 1
2q2.

From the construction of the Dirac bracket in section 4 it is clear that the reason for the
presence of the arbitrary functionµ in the Hamiltonian operator (29) can be traced back to
the degenerate Lagrangian (11) where it makes its first appearance asλ. In order to proceed
we need to prove that (29) is indeed a Hamiltonian operator which requires a check of the
Jacobi identities. However, this also follows from the fact that (29) is derived from the
Dirac bracket (25) for which we have a general proof of the Jacobi identities [12].

5.1. Jacobi identities

The Hamiltonian operator is a bi-vector which defines the Poisson bracket. The skew-
symmetry of the operator (29) is manifest. In order to verify that a given bi-vector is
Hamiltonian we must verify that it satisfies the tri-vector Jacobi identities. Thus following
Olver [4] we introduce an arbitrary basis of tangent vectors2 which are then conveniently
manipulated according to the rules of exterior calculus. The Jacobi identities are given by
the compact expression

L δI = 0 (mod. div.) (31)

where

L = J 2 I = 1
2 2T ∧ J2 (32)

and δ denotes the variational derivative. The vanishing of the tri-vector (31) modulo a
divergence is equivalent to the satisfaction of the Jacobi identities.

For the Hamiltonian operator (29) we have a two component system and introducing
the basis

2 =
(

η

θ

)
from equations (32) we have

Lµ =


(

q

µqpx

)
x

θ + q

µqpx

θx

q

µqpx

ηx + 2
qqx

µqp 2
x

θx +
(

qqx

µqp 2
x

)
x

θ


Iµ = q

µqpx

(
θ ∧ ηx + qx

px

θ ∧ θx

)
.

(33)
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To form the required expression in (31) we first calculate the variational derivatives

δIµ

δp
=

[
qx

µqp 2
x

− q

µ 2
q p 2

x

(
µqqqx + 2µpqpx

) − 2
qpxx

µqp 3
x

]
θ ∧ ηx

+
[

2
q 2

x + qqxx

µqp 3
x

− 2
µqqqq 2

x

µ 2
q p 3

x

− 3
µpqqqx

µ 2
q p 2

x

− 6
qqxpxx

µqp 4
x

]
θ ∧ θx

+ q

µqp 2
x

(θx ∧ ηx + θ ∧ ηxx) + 2
qqx

µqp 3
x

θ ∧ θxx

δIµ

δq
=

(
1

µqpx

− qµqq

µ 2
q px

)
θ ∧ ηx +

(
qµpq

µ 2
q px

+ 2
qpxx

µqp 3
x

)
θ ∧ θx − q

µqp 2
x

θ ∧ θxx

(34)

and take their exterior product withLµ. The result

Lµ δIµ = −
(

q2

µ 2
q p 3

x

θ ∧ θx ∧ ηx

)
x

is a total derivative so that the Jacobi identities are satisfied.

5.2. Hamilton’s equations

It can be directly verified that

Hµ = µ px (35)

is conserved for the flow (8) and this is the Hamiltonian density appropriate to the operator
(29). That is, the equations of motion (8) are cast into the form of Hamilton’s equations
(9) with Jµ and Hµ. But sinceµ is an arbitrary function ofp and q, given any other
differentiable functionν = ν(p, q) we have

Jµ δHµ = Jν δHν (36)

which is a statement of the Lenard–Magri recursion relation. Thus we have another
expression of the fact that there exist infinitely many Hamiltonian operators for RHMA2.
The Casimir density for the Hamiltonian operator (29) is given by

Cµ = σ px (37)

where

σq = 1

q
µq (38)

since it can be readily verified thatJµδCµ = 0. The proof of the Jacobi identities for (29)
in section 5.1 is for arbitraryµ, hence all local Hamiltonian operatorsJµ are compatible
with each other.

5.3. The Miura transformation

The remarkable feature of the Hamiltonian operator (29) is the existence ofµ, an arbitrary
function of two variables. We have already remarked that for the Hamiltonian formulation
of RHMA2 we need to start with a pair of nonlinear evolution equations and therefore had
to use the equations of motion defined by the vector field (8) rather than equation (3) itself.
This introduces an extra degree of freedom as the definitions ofp, q cannot be unique. It
may appear that this extra degree of freedom could be responsible for the existence of the
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arbitrary functionµ in the Hamiltonian operator (29). This is not the case. We have shown
that the reason for the appearance of this arbitrary function in the Hamiltonian operator can
be traced back to the existence of arbitrary functions in the master Lagrangian. Nevertheless,
there is certainly an extra degree of freedom available in the definition of the first-order
dependent variables for RHMA2 and it is possible to exploit it for various purposes. In fact
by a redefinition ofq the Hamiltonian operator (29) can be brought to the standard form of
a first-order operator with constant coefficients.

In place of (7) we may use the following definitions for the auxiliary variablesp, q

ux = p ut = Q

(
p,

q

px

)
(39)

whereQ is a differentiable function of its arguments. The equations of motion are now
given by

pt = Qx qt =
(

q

px

Qx

)
x

(40)

which are already in standard Hamiltonian form. That is, we have(
pt

qt

)
=

(
0 Dx

Dx 0

) (
δp

δq

)
H (41)

with the familiar first-order Hamiltonian operator and the Hamiltonian density is given by

H = h

(
p,

q

px

)
px (42)

whereh is related toQ throughHq = Q. The transformation of variables obtained by a
comparison of (39) and (5) is a Miura transformation as it brings the Hamiltonian operator
to the canonical form (41) of Gardner–Zakharov–Fadeev [13] with constant coefficients.

6. Non-local Dirac bracket for RHMA 2

There is another family of Hamiltonian operators for equations (6) which falls outside the
class of Hamiltonian operators in (29). Its origin can be traced back to the fact that

Lκ = κ px + κr (pt − qx) (43)

with κ an arbitrary function of two variables

κ = κ (p, r) r ≡ qx

px

κrr 6= 0 (44)

is a new Lagrangian for the system (6). This is another specialization of the master
Lagrangian (10) which is also degenerate and the passage to its Hamiltonian formulation
again requires the use of Dirac’s theory.

Starting with the Lagrangian (43) the momenta are given by

51 ≡ 5p = ∂Lκ

∂pt

= κr

52 ≡ 5q = ∂Lκ

∂qt

= 0

(45)

which cannot be inverted for the velocities. So we introduce the primary constraints

81 = 5p − κr

82 = 5q

(46)
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and using the canonical Poisson bracket relations (14) we find

{81(x), 81(y)} = κrr (x)
qx

p 2
x

δx(x − y) − κrr (y)
qy

p 2
y

δy(y − x)

{81(x), 82(y)} = κrr (x)
1

px

δy(x − y)

{82(x), 82(y)} = 0

(47)

which show that the constraints are once again second class. The total Hamiltonian consists
of a sum of the free Hamiltonian with a linear combination of the constraints as in (18) and
the requirement that the constraints (46) are maintained in time, cf equations (19), does not
lead to secondary constraints but instead determines the Lagrange multipliers

c1 = qx c2 = q 2
x

px

which also do not depend on the arbitrary functionκ. Using this information we find that

Hκ T =
∫ (

qx 5p + q 2
x

px

5q − κ px

)
dx (48)

is the total Hamiltonian and the equations of motion are given by (21). Once again we
can simplify the total Hamiltonian using the fact that second-class constraints (46) hold as
strong equations and we find

Hκ T = κr qx − κ px (49)

for the Dirac Hamiltonian density.
For the Dirac bracket we need the inverse of the Poisson brackets of the constraints (47).

The solution of equations (24) is given by

J 11
κ (x, y) = 0

J 12
κ (x, y) = − px

κrr (x)
θ(x − y)

J 21
κ (x, y) = −δ(x − y)

∫ x pξ

κrr (ξ)
dξ

J 22
κ (x, y) = − qx

κrr (x)
θ(x − y) − 2δ(x − y)

∫ x qξ

κrr (ξ)
dξ

(50)

whereθ is the Heaviside unit step function. The Dirac bracket for the Lagrangian (43) now
follows directly from (23).

7. Non-local Hamiltonian operators for RHMA 2

The correspondence (27) enables us to express the result (50) for the Dirac bracket of the
degenerate Lagrangian (43) in the form of the Hamiltonian operator

Jκ =

 0
px

κrr

D −1
x

D −1
x

px

κrr

qx

κrr

D −1
x + D −1

x

qx

κrr

 (51)
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whereD −1
x is the inverse ofDx . We refer the reader to [14] for the definition and properties

of D −1
x ; in particular

D −1
x f = 1

2

(∫ x

−∞
−

∫ ∞

x

)
f (ξ) dξ

and the integrals are taken in the principal value sense. This Hamiltonian operator
is therefore non-local. Once again, the appearance of the arbitrary functionκ in the
Hamiltonian operator (51) is a consequence of the existence of arbitrary functions in the
master Lagrangian (10).

The most important member of the family of non-local Hamiltonian operators (51) is
given by

J1 =
(

0 pxD
−1

x

D −1
x px qxD

−1
x + D −1

x qx

)
(52)

which has a linear dependence onpx andqx . It results from the Lagrangian

L1 = 1

px

(
pt qx − 1

2
q 2

x

)
(53)

with the simplest choice of arbitrary functionκ = 1
2r2. It will also be useful to rewrite the

operator (52) for the system of variables consisting ofu andq

J1 =
(

0 D −1
x uxxD

−1
x

−D −1
x uxxD

−1
x qxD

−1
x + D −1

x qx

)
(54)

which follows from the change of variablep = ux .
In section 7.3 we shall find that the non-local Hamiltonian operator (52) has a natural

interpretation, namely the Kac–Moody algebra corresponding to this operator is the algebra
of vector fields and functions on the unit circle. This operator is also distinguished as the
only element of the family of non-local Hamiltonian operators that survives in the case of
the real Monge–Amp̀ere equation with constant right-hand side.

7.1. Jacobi identities

The proof of the Jacobi identities forJκ of (51) proceeds along the general lines indicated
in section 5.1 but the properties ofD −1

x must be carefully considered. For ease of writing
we let ρ ≡ (κrr )

−1 and from (51) we have

Lκ =
(

ρpxD
−1

x θ

D −1
x (ρpxη) + ρqxD

−1
x θ + D −1

x (ρqxθ)

)
Iκ = ρpxη ∧ D −1

x θ + ρqxθ ∧ D −1
x θ .

(55)

The variational derivatives ofIκ are given by

δIκ

δp
= (rρr − ρ)

(
ηx ∧ D −1

x θ + η ∧ θ
) + rρrxη ∧ D −1

x θ

+ (
r2ρr

)
x
θ ∧ D −1

x θ − r2ρrθx ∧ D −1
x θ

δIκ

δq
= −ρrxη ∧ D −1

x θ − ρr

(
ηx ∧ D −1

x θ + η ∧ θ
)

− (ρ + rρr) θx ∧ D −1
x θ − (ρ + rρr)x θ ∧ D −1

x θ

(56)
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which results in a total derivative for the tri-linear form (31)

LκδIκ = − {
D −1

x (pxη + qxθ) ∧ [ρη + (ρ + rρr) θ ] ∧ D −1
x θ

}
x

completing the proof of the Jacobi identities.

7.2. Hamilton’s equations

The Hamiltonian functionHκ appropriate to the non-local Hamiltonian operator (51) is
given by a local expression which is simply the integral of the total Hamiltonian density of
Dirac in (49) and once again we have the Lenard–Magri recursion relation

Jκ δHκ = Jι δHι (57)

where ι is another arbitrary function ofp, r. All non-local Hamiltonian operators are
compatible with each other.

7.3. The Kac–Moody algebra

Hamiltonian operators associated with integrable nonlinear evolution equations give rise to
Kac–Moody (KM) algebras [15]. Two compatible Hamiltonian operators actually yield an
infinite hierarchy of KM algebras. There is an explicit algorithm for the construction of
KM algebras from the Hamiltonian operator which is essentially based on Fourier analysis.
Since the non-local operator (52) depends linearly onpx and qx Fourier analysis makes
sense and the operator (52) is suitable for consideration as the backbone of a possible KM
algebra. The nonlinearities in the local operator present a formidable obstacle to any similar
discussion of (29). Using

p(x) = 1

2π

∫
1

n
Pn einx dn q(x) = 1

2π

∫
1

m
Qm eimx dm

we find that the KM algebra appropriate to the operator (52) is given by

[Pm, Pn] = 0

[Pm, Qn] = m Pm+n

[Qm, Qn] = (m − n) Qm+n

(58)

which can be recognized as the algebra of functions and vector fields onS1. Thus we can
use the representation

Pn = z−n Qm = z−m+1 d

dz

for the algebra underlying the simplest non-local Hamiltonian operator (52).

7.4. Compatibility

Two Hamiltonian operators are compatible if their linear combination with constant
coefficients is also a Hamiltonian operator. In the case where one of the Hamiltonian
operators belongs to the class of (29) and the other one to (51), the check of compatibility
requires that

Cµκ = Lµ δIκ + Lκ δIµ = 0 (59)
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modulo a divergence. It turns out that only the simplest local and non-local operatorsJ0

andJ1 are compatible. From equations (33), (34), (55) and (56) it follows that

C01 =
(

1

p 2
x

θ ∧ [
(qxθx + pxηx) ∧ D −1

x θ + D −1
x (pxη + qxθ) ∧ θx

])
x

which establishes the compatibility ofJ0 and J1. In all other cases local and non-local
Hamiltonian operators are incompatible.

8. Recursion operators

Since there are infinitely many compatible Hamiltonian operators of both local (29) as well
as non-local (51) variety, there exist infinitely many opportunities for constructing recursion
operators of either type or both. In the first category we have

Rµν = JµJ −1
ν =


Dx

νq

µq

D −1
x 0(

νq

µq

)
x

qx

px

D −1
x

νq

µq

 (60)

which generalizes our earlier result [1], while in the latter category we find

Rκι = JκJ
−1

ι =


ιrr

κrr

0

D −1
x

[
qx

px

(
ιrr

κrr

)
x

]
D −1

x

ιrr

κrr

Dx

 . (61)

These recursion operators satisfy the Lax equation

Rt = [R, A] (62)

where

A =

 0 Dx

− q 2
x

p 2
x

Dx 2
qx

px

Dx

 (63)

is obtained from the Frechét derivative of the flow (8).
However, there is also the possibility of constructing recursion operators by the

composition of Hamiltonian operators of both local and non-local types provided they are
compatible. We have found thatJ0 andJ1 form a compatible pair. Thus we are led to the
recursion operator

R = J0J
−1

1 =


Dx

1

px

Dx

1

px

0

−qxx

p 3
x

Dx − Dx

qxx

p 3
x

1

px

Dx

1

px

Dx

 (64)

and we find that a remarkable factorization takes place

R = EE (65)

where

E =


Dx

1

px

0

−qxx

p 2
x

1

px

Dx

 (66)
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is a first-order operator. This situation is familiar from third-order Hamiltonian operators
for two component equations of hydrodynamic type [7]. The recursion operator obtained
from a composition of third and first-order Hamiltonian operators factorizes to yield the
first-order recursion operator of Sheftel’. Similar considerations suggest thatE itself is a
good recursion operator. It is readily verified thatE as well as its inverse

E−1 =
(

pxD
−1

x 0

qxD
−1

x − D −1
x qx D −1

x px

)
(67)

satisfy equation (62) and are therefore good recursion operators. Finally, we should remark
that the recursion operators (60) and (61) can also be factorized, however, unlike the case
of (65), the factors consist of different operators and each one is not a recursion operator.

8.1. Infinite sequences of Hamiltonians

There are several infinite families of conserved quantities that one can obtain by repeated
application of the recursion operators we have presented in section 8. Corresponding to the
recursion operatorE we haveF which is defined by

S = J −1
0 J1 = FF (68)

which yields infinite sequences of gradients of conserved quantities. We find thatF is given
by

F =
(

D −1
x px D −1

x qx − qxD
−1

x

0 pxD
−1

x

)
(69)

and a simple example of the infinite sequence of conserved quantities that it generates is
the following:

p qx
F−→ · · · F−→ 1

n!
pn qx . (70)

Depending on the starting point one can construct infinitely many such sequences. For
example,S generates a family of local as well as non-local conserved quantities according
to the scheme

· · · S−→ 1

2
qDx

{
1

px

Dx

[
1

px

Dx

(
qx

px

)]} S−→ −1

2

q 2
x

px

S−→ 1
2 q2 px

S−→ 1
2 q pxD

−1
x

[
pxD

−1
x (qpx)

] S−→ · · · .

(71)

and there are infinitely many different combinations of such sequences. The above
expressions for the conserved Hamiltonian densities can be simplified by discarding
divergences, however, this form is useful because it suggests the generic term for the
conserved quantity obtained by repeated applications ofS. The determination of the
cardinality of the conserved Hamiltonians which are in involution with respect to Poisson
brackets defined by both types of Hamiltonian operators is complicated because of the
appearance of arbitrary functions in these Hamiltonian operators.

8.2. Higher flows

Starting with the flow (8) we should obtain higher flows for RHMA2 through the application
of any one of the recursion operators (60), (61), (66) or (67) on the vector field (8).
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However, in all of these cases an elementary calculation shows that the resulting higher
flow is simply

pt qx − qt px = 0

the real homogeneous Monge–Ampère equation back again.

9. Symplectic form of RHMA2

The principal geometrical object in the theory of symplectic structure is the symplectic
2-form ω which is closed

dω = 0 (72)

and by Poincaŕe’s lemmaω can be written as

ω = dα (73)

in a local neighbourhood. On the other hand the Hamiltonian operator maps differentials
of functions into vector fields which works in the opposite direction. Thus the statement of
the symplectic structure of the equations of motion consists of

iXω = dH (74)

which is obtained by the contraction of the symplectic 2-formω with the vector fieldX
defining the flow.

For systems with finite, and furthermore even number of degrees of freedom, the
symplectic 2-form is the inverse of the Hamiltonian structure functions which is the analog
of the Hamiltonian operator. However, the generalization of the notion of an inverse to
systems with infinitely many degrees of freedom is not immediate. That is, the symplectic
2-form is obtained by integrating the density [16]

ω = 1
2 dui ∧ Kij duj (75)

over the spatial variable, whereK is the ‘inverse’ ofJ . Given Hamiltonian operatorJ , its
‘inverse’ may be defined by

J ikKkj = KjkJ
ki = δi

j (76)

but equation (76) is an operator equation which acts on gradients of functions. On the other
hand, quite generally there exist Casimir functions which are annihilated by the Hamiltonian
operator. Such functions, cf equation (37) above, must be excluded in the definition of the
‘inverse’ in (76).

Our approach to the construction of Hamiltonian operators is based on the construction
of Dirac brackets for systems subject to second class primary constraints. It is evident
from (23) that the essential element in the Dirac bracket is the inverse of the matrix of
Poisson brackets of the constraints. On the other hand, according to (76) we must invert
again to obtain the symplectic 2-form, thus we have simply

Kik(x)δ(x − y) ≡ {φi(x), φk(y)} (77)

that is, the inverse of the Hamiltonian operator can be obtained directly from the Poisson
bracket of second class constraints.
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9.1. Symplectic 2-forms

The Hamiltonian operator (29) can be inverted in a straightforward way subject to the
provision above:

Kµ =

 −µqqx

q
D −1

x − D −1
x

µqqx

q
D −1

x

µqpx

q

µqpx

q
D −1

x 0

 (78)

or we can immediately read it off from equations (17) and (77). Equation (78) is also a
statement of the non-degeneracy of the Hamiltonian operator (29). Hence from (75) and
(78) we find the symplectic 2-form

ωµ = µq

q
(px dq − qx dp) ∧ d(D −1

x p) (79)

corresponding to the local Hamiltonian operator (29). It can be verified thatωµ is a closed
2-form by direct calculation. We had found [1] that in theu, q variables the inverse of
J0 is a local operator and this is true for the family of local Hamiltonian operators (29) in
general. The symplectic 2-form assumes the simpler expression

ωµ = λuxux
(uxx dq − qx dux) ∧ du (80)

in these variables. By invoking the Poincaré lemma, in a local neighbourhood we can write

ωµ = dαµ αµ = σpx d(D −1
x p) (81)

and we note that the coefficient of the 1-formαµ is also the Casimir (37) for the Hamiltonian
operatorJµ. The closure of the symplectic 2-form (79) is equivalent to the satisfaction of
the Jacobi identities by the Hamiltonian operator (29).

For the non-local Hamiltonian operator (51) the inverse is given by the local operator

Kκ =


−qxκrr

p 2
x

Dx − Dx

qxκrr

p 2
x

κrr

px

Dx

Dx

κrr

px

0

 (82)

which also follows from (47) and (77). Then from (75) and (82) the symplectic 2-form
appropriate to the non-local Hamiltonian operator is given by

ωκ = κrr

(
− qx

p 2
x

dpx + 1

px

dqx

)
∧ dp

= κrr dr ∧ dp (83)

so that the verification thatωκ is closed is immediate. In a local neighbourhood we can
write

ωκ = dακ ακ = κr dp (84)

using the Poincaré lemma.
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9.2. Symplectic form of equations of motion

With the symplectic 2-forms (79) and (83) we need to check that (74) are satisfied. For
this purpose we recall that given a 2-formω = a(v, vx) dv ∧ dvx and the vector field
X = m(v, vx) ∂/∂v, we haveiXω = (2amx + max) dv. If we considerωκ with κ = 1

2r2,
from this expression we get

iX ω 1
2 r2 = − qx

px

dqx − i(
qx

∂
∂p

) qx

p 2
x

dp ∧ dpx + i(
q 2
x

px

∂
∂q

) 1

px

dp ∧ dqx

= − qx

px

dqx −
[

2
qx

p 2
x

qxx + qx

(
qx

p 2
x

)
x

− q 2
x

p 3
x

pxx

]
dp − q 2

x

p 2
x

dpx

= d

(
−1

2

q 2
x

px

)
= dH 1

2 r2 (85)

where we have discarded a total derivative. Similarly, in order to check thatiX ωµ = dHµ,
we note that given the 2-formω = a(v, vx, . . .) dv ∧ d(D −1

x v) and the vector field
X = m(v, vx, . . .) ∂/∂v, we haveiXω = −amd(D −1

x v) − mD −1
x (adv) . The application

to the 2-form (79) yields

iX ωµ = −qxD
−1

x (σqpxdq) + qxD
−1

x (σqqxdp)

= qσq(pxdq − qxdp) = dHµ (86)

using equation (38).

9.3. Witten–Zuckerman 2-form

Time plays a privileged role in Hamiltonian mechanics. While this presents no problem for
systems with finitely many degrees of freedom, in field theory it has the disadvantage of non-
covariance. In order to remedy this situation Crnković and Witten and Zuckerman [8] have
introduced the conserved current 2-form which provides an elegant covariant formulation
of Hamiltonian structure. For Monge–Ampère covariance is particularly necessary because,
as we noted in the introduction, the choice of time coordinate for RHMA2 is quite arbitrary.

The simplest way to obtain the Witten–Zuckerman current 2-formω for the Lagrangian
(11) is to first construct the 1-formα which follows from the first variation of the Lagrangian
andα is related toω as in (73). Assuming the equations of motion (6), the first variation
reduces to a conservation law

δLλ = αt
λ, t + αx

λ, x (87)

where

αt
λ = ∂Lλ

∂ut

δu + ∂Lλ

∂qt

δq = −qx λux
δu + λ δq

αx
λ = ∂Lλ

∂ux

δu + ∂Lλ

∂qx

δq = λux
qt δu.

(88)

Finally, the current 2-formωλ for RHMA2 is given by

ωt
λ = δαt = λuxux

(qx δu ∧ δux − uxx δu ∧ δq)

ωx
λ = δαx = λuxux

(
− q 2

x

uxx

δu ∧ δux + qx δu ∧ δq

) (89)
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and using the equations of motion we can readily verify that it satisfies

δωα = 0 ωα
,α = 0 (90)

where α ranges over two valuest and x. The Witten–Zuckerman 2-form is closed and
conserved. For the Lagrangian (43) a similar procedure yields

ωt
κ = κrr δr ∧ δp

ωx
κ = r κrr δp ∧ δr

(91)

which also satisfies equations (90). A useful relation in checking the conservation law for
the 2-form (91) is the dKdV, or the Riemann equation form of RHMA2

rt = r rx (92)

which follows from the results of [18].
We note that the time components of the Witten–Zuckerman 2-forms (89) and (91) for

RHMA2 that follow from the Lagrangians (11) and (43) are precisely the symplectic 2-forms
(80) and (83), respectively. The use of the notationδ for d follows [8] and is restricted to
this section only.

10. Lax pair for RHMA 2

We have seen that the recursion operators of section 8 satisfy the Lax equation (62) but
these are not useful Lax pairs. We need to cast RHMA2 into the form of a zero-curvature
condition [17]

Ut − Vx − [U, V ] = 0 (93)

which is the basic element in the solution of of completely integrable systems using
the inverse scattering transform. The zero-curvature condition for theSL(2, R)-valued
connection 1-form given by the pair

U =

 λ px

q px − λ

p 2
x

pxx − λ2

px

−λ

 V =


λ

qx

px

qx

q qx − λ

p 2
x

qxx − λ2

p 2
x

qx −λ
qx

px


(94)

provides such a formulation of RHMA2. But in this case the potential has a quadratic
dependence on the spectral parameterλ which has so far not been considered for an
application of inverse scattering techniques. ThisU, V pair is therefore not immediately
amenable to treatment by the method of inverse scattering.

11. Multi-Hamiltonian structure of RMA 2

The infinite classes of Hamiltonian operators we have obtained for RHMA2 reduce to
the compatible pairJ0 and J1 of Hamiltonian operators (30) and (52) when we consider
the Hamiltonian structure of RMA2 with non-zero constant right-hand side in (3). The
corresponding pair of symplectic 2-forms are also unchanged and the only modification
comes in the conserved quantities. The infinite sequence of conserved Hamiltonians for
RMA2 are those which reduce to the RHMA2 Hamiltonians forµ = 1

2q2 andκ = 1
2r2 in
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the limit K → 0. Thus the basic Hamiltonian densities entering into the Lenard–Magri
scheme

J0 δ HK
1 = J1 δ HK

0 (95)

are given by

HK
1 = 1

2
q2px + K D −1

x p HK
0 = − 1

2px

(
q 2

x + K
)

(96)

and the infinite sequences of conserved Hamiltonians which are in involution with respect
to Poisson brackets defined byJ0 and J1 are modified for RMA2. For example, by the
application of the recursion operator (66) toHK

1 we get

HK
2 = 1

2px

[(
qx

px

)
x

]2

+ K

2

p 2
xx

p 5
x

(97)

which, up to a divergence, is the same as the RHMA2 Hamiltonian density in the sequence
(71) for K → 0. Repeated application of the recursion operator (66) yields

pt qx − qt px = −Dx

{
1

px

Dx

[
1

px

· · · K · · · pxD
−1

x

(
pxD

−1
x

)]}
(98)

for the RMA2 hierarchy of equations.
The elliptic case of (3) is equivalent to the equation for minimal surfaces while the

hyperbolic case corresponds to the Born–Infeld equation [18]. Through the appropriate
change of variables the rich multi-Hamiltonian structure of the Born–Infeld equation [19]
carries over into RMA2 which includes the Hamiltonian operatorsJ0 andJ1.

12. Ur-RHMA 2

The local and non-local family of Hamiltonian operators for RHMA2 have scalar
counterparts for the Ur-RHMA2 equation (4) which can be written as

ut = k

ux

(99)

in the form of an evolution equation. With the definition

U = 2k

u 2
x

this equation can be identified as

Ut + U Ux = 0

which is the dispersionless KdV, or Riemann equation. Ur-RHMA2 admits infinitely many
conserved quantities

Hn = u n
x (100)

as well as infinitely many local Hamiltonian operators

Jα = kα

u α
x uxx

Dx

1

u α
x uxx

(101)

provided the various constants are related by

n = 2(α + 1) 2α(α + 1)(2α + 1)kα = −k



3276 Y Nutku

so that the equation of motion (99) assumes the form of Hamilton’s equations (103). Scalar
Hamiltonian operators of this type were first considered by Vinogradov [20]. The family of
non-local Hamiltonian operators

Jβ = kβu β
x D −1

x u β
x (102)

which is due to Sokolov [21] is also appropriate to the Ur-RHMA2 equation. In this case the
conserved Hamiltonian densities are also given by (100) but now the constants are related
by

n = −2β 2β(2β + 1)kβ = (β + 1)k

and we find that Ur-RHMA2 is cast into Hamiltonian form with

ut = Jα δH2α+2 = Jβ δH−2β (103)

which again results in an infinite set of Hamiltonian structures. In (101) and (102) we have
theqq-components of the RHMA2 matrix Hamiltonian operators (29) and (51), respectively.

The recursion operator obtained by the composition of these Hamiltonian operators

Rαβ = 1

u α
x uxx

Dx

1

u
α+β
x uxx

Dx

1

u
β
x

(104)

can be factored as in (65) with

Eαβ = 1

u α
x uxx

Dx

1

u
β
x

(105)

resulting in a Sheftel’-type recursion operator for Ur-RHMA2.

13. The RHMA in arbitrary dimension

In order to write RHMAn as a system of nonlinear evolution equations it will be useful to
introduce a compact notation. For this purpose we shall consider the determinants of the
(n − 1) × (n − 1) matrices

1k ≡ (−1)k+1 det


q1 u1 1 · · · û1k · · · u1n−1

q2 u2 1 · · · û2k · · · u2n−1

· · · · · · · · · · · ·
qn−1 un−1 1 · · · ûn−1k · · · un−1n−1

 (106)

obtained by deleting the 0th row andkth column in the matrix of second derivatives. The
latter is indicated by a hat over the omitted terms. In particular, fork = 0 we have the
Monge–Amp̀ere operator inn − 1 dimensions

1 ≡ −10 6= 0

which is a statement of non-degeneracy of RHMAn. The system of evolution equations for
RHMAn is given by

ut = q

qt = 1

1
qi1

i i = 1, 2, . . . , n − 1
(107)

where qi = ∂q/∂xi and henceforth we shall reserve the indexi to range overn − 1
independent variables while continuing the use of the summation convention over repeated
indices. Thus the vector field

X = q
∂

∂u
+ 1

1
qi1

i ∂

∂q
(108)
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defines the flow for RHMA inn dimensions.
Equations (107) are cast into the form of Hamilton’s equations with the Hamiltonian

operator

J =


0

q

µ′1

− q

µ′1
q1i

µ′12
Di + Di

q1i

µ′12

 (109)

whereµ is an arbitrary differentiable function ofq alone and prime denotes derivative with
respect to the argument. The Hamiltonian function is given by

H = µ1 (110)

and once again, there exist infinitely many conserved quantities (110) and Hamiltonian
operators (109) associated with RHMA inn dimensions. However, this is not the full
extent of the Hamiltonian structure of (107) as we have not considered non-local operators,
or the dependence ofµ on other variables. Concerning the latter point we note that

H̃ = µ(q, u1, u2, . . . , un−1)1 (111)

is also conserved for the system (107). Hence the number of independent variables entering
into the arbitrary functionµ can be increased considerably with an attendant increase in the
number of Hamiltonian operators which is already infinite in (109).

In order to present the symplectic structure of (107) we need the inverse of (109) and
subject to the provisions of section 9, we find that it is again a local operator. Then from
(75) we get the symplectic 2-form

ω = µ′

q

(
1idu ∧ dui + 1dq ∧ du

)
(112)

which can be directly verified to be a closed 2-form. In a local neighbourhood we can write
it as the exterior derivative of a 1-formα which is given by

α = σ 1 du (113)

where σ is again related toµ through (38) andσ1 is the Casimir for the Hamiltonian
operator (109).

14. Geodesic flow for CHMA

The Hamiltonian structure of the geodesic flow for CHMA is very similar to that of RHMA.
Semmes [10] has introduced the notion of geodesics onN , the space of smooth real-valued
functions onI × M whereI is a real interval. ForF ∈ N (I × M) and (∂∂̄F )n 6= 0 the
vector field

X = q
∂

∂F
+ n

[
(∂∂̄F )n−1 ∧ ∂q ∧ ∂̄q

][
(∂∂̄F )n

] ∂

∂q
(114)

defines geodesics onN . The holomorphic exterior derivative is denoted by∂. Here as
well as in the following, it will be understood that volume forms onM enclosed by square
parantheses automatically carry the Hodge star operator so that the result is a 0-form. The
discussion of the symplectic structure of CHMA by Semmes is based on the Kähler 2-form

1

2i
∂∂̄F
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which is not the relevant object that emerges from an examination of the Hamiltonian
structure of the flow (114). Our approach to the problem of the geodesic flow for CHMA
will be in the framework of dynamical systems with infinitely many degrees of freedom and
the resulting symplectic 2-form is given in (118). The advantage of our approach lies in
the direct proof it furnishes for the complete integrability of the geodesic flow for CHMA.

The geodesic flow for CHMA satisfies Hamilton’s equations(
Ft

qt

)
= X

(
F

q

)
= JcδHc (115)

whereX denotes the vector field (114). The Hamiltonian density is given by

Hc = µ
[
(∂∂̄F )n

]
(116)

and the Hamiltonian operator is

Jc =


0

q

µ′ [(∂∂̄F )n
]

−q

µ′ [(∂∂̄F )n
] Re

{
nq

[
∂̄q ∧ (∂∂̄F )n−1

µ′ [
(∂∂̄F )n

]2 ∧ ∂ ] − [∂∧ nq∂̄q ∧ (∂∂̄F )n−1 ]

µ′ [
(∂∂̄F )n

]2

}

(117)

whereµ = µ(q) is an arbitrary differentiable function of its argument.
The inverse of Hamiltonian operator (117), subject to the restrictions of section 9, is

again a local operator which yields the symplectic 2-form

ωc = µ′

q

{
Re

(
dF ∧ [

∂q ∧ (∂∂̄F )n−1 ∧ ∂̄
]

dF
) + 1

n

[
(∂∂̄F )n

]
dq ∧ dF

}
(118)

and for integrable complex structureω can be simplified by expressing the exterior derivative
in terms of∂, ∂̄. The statement of the symplectic structure of the geodesic flow for CHMA
is given by (74). The 2-form (118) is closed as one can show readily by direct calculation.
However, it is more instructive to note that by invoking the Poincaré lemma in a local
neighbourhood we can write

ωc = dαc αc = 1

n
σ(q)

[
(∂∂̄F )n

]
dF (119)

whereσ again satisfies equation (38).
There are infinitely many symplectic 2-forms, compatible Hamiltonian operators and

conserved Hamiltonians for the geodesic flow for CHMA.

15. Conclusion

We have considered the multi-Hamiltonian structure of various real homogeneous Monge–
Ampère equations and found that quite generally they admitinfinitely manysuch structures.
In particular for RHMA2 we have shown that there exist infinitely many Hamiltonian
operators of both the local and non-local variety. The simplest Hamiltonian operator of
the latter type leads to the Kac–Moody algebra of vector fields and functions on the unit
circle. For Ur-RHMA2 we have the scalar version of the RHMA2 Hamiltonian operators.
Finally, we have shown that local Hamiltonian operators are generic to RHMAn. Thus the
real homogeneous Monge–Ampère equation is a system with infinitely many Hamiltonian,
or symplectic structures in the theory of integrable systemsin arbitrary dimension.
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[1] Nutku Y and Sariŏglu Ö 1993Phys. Lett.173A 270
[2] Dirac P A M 1964Lectures on Quantum Mechanics (Belfer Graduate School of Science Monographs Series

2) (New York: Yeshiva University)
Hanson A, Regge T and Teitelboim C 1976Acad. Naz. Lincei (Rome)
Sundermeyer K 1982Constrained Dynamics (Lecture Notes in Physics 169)(Berlin: Springer)

[3] Magri F 1978J. Math. Phys.19 1156
Magri F 1980Nonlinear Evolution Equations and Dynamical Systems (Lecture Notes in Physics 120)ed

M Boiti, F Pempinelli and G Soliani (Berlin: Springer) p 233
[4] Magri F, Morosi C and Tondo G 1988Comm. Math. Phys.115 457

Olver P J 1986Applications of Lie Groups to Differential Equations (Graduate Texts in Mathematics 107)
(Berlin: Springer)
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